Search This Blog

Tuesday, May 29, 2012

Our Investment in NASA Continues To Pay Huge Dividends

While NASA doesn't talk much about the huge dividends it pays to humanity, it's clear that people should know that we're getting massive dividends even today from research NASA makes possible.

Case in point, bone loss is one of the biggest problems most folks face growing older. But, NASA's research on the International Space Station may just be the breakthrough we need to eliminate the problem. NASA-funded Research: Earlier Detection of Bone Loss May be in Future explains:

Are your bones getting stronger or weaker? Right now, it's hard to know. Scientists at Arizona State University and NASA are taking on this medical challenge by developing and applying a technique that originated in the Earth sciences. In a new study, this technique was more sensitive in detecting bone loss than the X-ray method used today, with less risk to patients. Eventually, it may find use in clinical settings, and could pave the way for additional innovative biosignatures to detect disease.

"Osteoporosis, a disease in which bones grow weaker, threatens more than half of Americans over age 50," explained Ariel Anbar, a professor in ASU's Department of Chemistry and Biochemistry and the School of Earth and Space Exploration, and senior author of the study.

"Bone loss also occurs in a number of cancers in their advanced stages. By the time these changes can be detected by X-rays, as a loss of bone density, significant damage has already occurred," Anbar said. "Also, X-rays aren't risk-free. We think there might be a better way."

With the new technique, bone loss is detected by carefully analyzing the isotopes of the chemical element calcium that are naturally present in urine. Isotopes are atoms of an element that differ in their masses. Patients do not need to ingest any artificial tracers and are not exposed to any radiation, so there is virtually no risk, the authors noted.

The findings are presented in a paper published in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) the week of May 28. It is titled "Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes."

"The paper suggests an exciting new approach to the problem," said Dr. Rafael Fonseca, chair of the Department of Medicine at the Mayo Clinic in Arizona, and a specialist in the bone-destroying disease multiple myeloma. Fonseca was not associated with the study but is partnering with the ASU team on collaborative research based on the findings.

"Right now, pain is usually the first indication that cancer is affecting bones. If we could detect it earlier by an analysis of urine or blood in high-risk patients, it could significantly improve their care," Fonseca said.

And, that's where NASA comes in:

A new study, funded by NASA, examined calcium isotopes in the urine of a dozen healthy subjects confined to bed ("bed rest") for 30 days at the University of Texas Medical Branch at Galveston's Institute for Translational Sciences-Clinical Research Center. Whenever a person lies down, the weight-bearing bones of the body, such as those in the spine and leg, are relieved of their burden, a condition known as "skeletal unloading". With skeletal unloading, bones start to deteriorate due to increased destruction. Extended periods of bed rest induce bone loss similar to that experienced by osteoporosis patients, and astronauts.

"NASA conducts these studies because astronauts in microgravity experience skeletal unloading and suffer bone loss," said co-author Scott M. Smith, NASA nutritionist. "It's one of the major problems in human spaceflight, and we need to find better ways to monitor and counteract it. But the methods used to detect the effects of skeletal unloading in astronauts are also relevant to general medicine."

Lab analysis of the subjects' urine samples at ASU revealed that the new technique can detect bone loss after as little as one week of bed rest, long before changes in bone density are detectable by the conventional approach, dual-energy X-ray absorptiometry (DEXA).